Еще один тип динамических фракталов составляют фракталы (так называемые бассейны) Ньютона. Формулы для их построения основаны на методе решения нелинейных уравнений, который был придуман великим математиком еще в XVII веке. Применяя общую формулу метода Ньютона zn+1 = zn –f(zn)/f'(zn), n = 0, 1, 2, ... для решения уравнения f(z) = 0 к многочлену zk – a, получим последовательность точек: zn+1 = (k – 1)znk/kznk–1, n = 0, 1, 2, ... . Выбирая в качестве начальных приближений различные комплексные числа z0, будем получать последовательности, которые сходятся к корням этого многочлена. Поскольку корней у него ровно k, то вся плоскость разбивается на k частей — областей притяжения корней. Границы этих частей имеют фрактальную структуру. (Заметим, что если в последней формуле подставить k = 2, а в качестве начального приближения взять z0 = a, то получится формула, которую реально используют для вычисления квадратного корня из a в компьютерах). Наш фрактал получается из многочлена f(z) = z3 – 1.
Предупреждение
Браузер может блокировать содержимое данной страницы. Для разблокировки содержимого нажмите на значок замка в адресной строке, найдите предупреждение "часть информации была заблокирована", "Подробнее", "Разблокировать".