Чтобы термоядерный синтез стал источником энергии, произведение плотности частиц и времени их удержания на предельно близком расстоянии друг от друга должно превышать определенную величину.
В принципе, термоядерный синтез — реакция, при которой из ядер легких химических элементов образуются более тяжелые (см. Ядерный распад и синтез), — может послужить для человечества источником энергии. При некоторых реакциях масса получающихся ядер (плюс масса образующихся в качестве побочного продукта элементарных частиц) меньше массы исходных ядер, участвующих в реакции, а избыток массы преобразуется в энергию в точном соответствии с хорошо известной формулой Эйнштейна E = mc2.
Основным источником энергии звезд служит термоядерный синтез гелия из ядер водорода — протонов (см. Эволюция звезд). Эта реакция происходит в три этапа; на первом из обычного водорода образуется дейтерий (тяжелый изотоп водорода, ядро которого состоит из одного протона и одного нейтрона) — происходит это в результате столкновения двух протонов. Попытки воспроизвести управляемый синтез водорода — простейшую из термоядерных реакций — находятся в центре пристального внимания физиков-ядерщиков начиная с середины ХХ века. Мотивация тут проста: запасы дейтерия в мировом океане практически неограниченны, и он может стать буквально неисчерпаемым источником энергии для человечества на многие века — но лишь при условии, что удастся заставить ядра дейтерия вступить между собой в реакцию синтеза.
Попытки поставить ядерный синтез на службу человечеству в качестве источника энергии идут в обход первичного этапа термоядерного синтеза, который происходит в недрах звезд; ученые стремятся искусственно воспроизвести реакцию синтеза дейтерия (дейтерий обозначается символом 2Н) и трития (изотоп водорода с одним протоном и двумя нейтронами в ядре, обозначается 3Н). В результате должен получиться атом гелия, испуститься один нейтрон (n) и выделиться искомая энергия. Формула этой реакции такова:
3Н + 2Н → 4Не + n
Для поддержания запасов трития его, в свою очередь, нужно «воспроизводить» путем улавливания тяжелым изотопом лития (Li) нейтронов, излучаемых в процессе реакции:
6Li + n → 3H + 4He
Основная проблема с получением управляемого термоядерного синтеза трития и дейтерия заключается в том, как разогнать два положительно заряженных ядра до нужной скорости и заставить их сблизиться на необходимое для начала реакции синтеза минимальное расстояние, преодолев силу электростатического отталкивания. На практике это означает, что смесь трития с дейтерием нужно разогреть до температуры в миллионы градусов, а такой температуры не выдержит никакая материальная оболочка (фактически, речь идет об удержании плазмы; см. Агрегатные состояния вещества). Но, даже добившись столь высокой температуры (а современные технологии это позволяют), мы не будем иметь гарантию, что в результате реакции термоядерного синтеза будет получено больше энергии, чем затрачено нами на разогрев смеси и запуск реакции.
Критерий Лоусона как раз и определяет минимальную частоту реакций синтеза в секунду, необходимую для устойчивого поддержания реакции в материальной среде. Искусственного синтеза можно добиться либо за счет создания крайне высокой плотности взаимодействующих частиц (и, как следствие, повышения до нужного уровня вероятности их соударения) или за счет более длительного удержания частиц на предельно малом расстоянии друг от друга (давая, тем самым, частицам больше времени для вступления в реакцию). Получается, что для того, чтобы термоядерный синтез начал производить энергию, должно быть соблюдено условие:
Nt > около 1020
где N — концентрация частиц (число частиц в кубометре объема), t — время (в секундах). Это и есть критерий Лоусона, определяющий условия начала управляемой реакции термоядерного синтеза. Его смысл в том, что по достижении температуры запуска реакции необходим компромисс между концентрацией (или плотностью) частиц и временем их удержания в объеме, обеспечивающем эту плотность. Можно «разжечь» термоядерный синтез при меньшей концентрации частиц за счет более длительного удержания плазмы, а можно — при меньшем времени удержания плазмы за счет повышения плотности частиц в ней.
Соответственно, инженеры-ядерщики пытались добиться управляемого термоядерного синтеза двумя путями, используя два различных подхода к решению проблемы сжатия водорода, его разогрева до состояния плазмы и удержания в процессе реакции термоядерного синтеза. Эти подходы получили название, соответственно, «магнитная ловушка» и «инерциальная ловушка».
При использовании магнитной ловушки плазма удерживается сверхмощным магнитным полем. По мере повышения температуры силовые линии магнитного поля уплотняются, и горячая плазма стягивается от стен контейнера к его центру. Как только плотность и время удержания частиц достигнут порога, определяемого критерием Лоусона, запустится реакция термоядерного синтеза. В принципе, магнитные ловушки уже реализованы технически; в частности, условия, необходимые для запуска реакции управляемого термоядерного синтеза, достигнуты на установке «Торус» общеевропейского проекта JET (Joint European Torus) в Калхэме (Великобритания), однако по причине несовершенства и неэффективности оборудования затраты энергии на запуск реакции термоядерного синтеза по-прежнему превышают энергетическую отдачу от полученной реакции. (В отечественной прикладной науке описываемое устройство принято называть токамак: ТОроидальная КАмера с МАгнитными Катушками. — Примечание переводчика.)
Смысл инерциальной ловушки заключается в том, что капля глубоко охлажденной смеси трития и дейтерия помещается в стеклянную капсулу, а затем со всех сторон обстреливается мощными лазерными лучами. Внешний слой капли моментально испаряется, в результате чего на внутренние слои капли воздействуют сходящиеся ударные волны. Эти ударные волны сжимают и разогревают водород до температуры запуска реакции термоядерного синтеза. В настоящее время лазерная установка для возбуждения инерциальной реакции термоядерного синтеза строится на базе Ливерморской лаборатории (Livermore Laboratory) в Калифорнии. Ее запуск планируется на 2006 год, и каплю водорода там будут облучать 192 лазера с разовым энергетическим импульсом 1,8 мегаджоулей.