Рейтинг:  5 / 5

Звезда активнаЗвезда активнаЗвезда активнаЗвезда активнаЗвезда активна
 

Частоты излучения и поглощения света в спектрах химических веществ совпадают.

 

Больше всего Роберт Вильгельм Бунзен прославился благодаря разработанной им лабораторной горелке Бунзена, которую вам наверняка доводилось видеть во время демонстрации опытов на школьных уроках химии, а может быть, и самим использовать ее при проведении лабораторных работ. Она дает очень чистое белое пламя, и поэтому ее используют для разогрева веществ с целью наблюдения их цветового спектра (см. Проба на окрашивание пламени). Лабораторное каление стало первым методом прямого обнаружения присутствия химических элементов в составе вещества без проведения химических реакций.

В середине XIX века Бунзен считался признанным мировым лидером в области получения чистых препаратов химических элементов. В 1859 году он решил пойти дальше и стал пропускать световые лучи от раскаленных образцов через призму, разлагая их на наглядный спектр. К тому времени он уже обнаружил, что отдельные ярко выраженные цвета в спектре раскаленных химических элементов — в частности, натрия — удивительным образом полностью совпадают по длине волны и частоте с темными линиями Фраунгофера в спектре Солнца. Сегодня мы знаем, что это следствие поглощения части белого излучения Солнца более холодными химическими элементами, присутствующими в его внешней оболочке, и отсутствие в солнечных лучах спектральных линий того же натрия свидетельствует о его наличии в солнечной короне. Открытие совпадения спектров излучения и поглощения химических элементов пополнило собой длинный ряд экспериментальных открытий, далеко не сразу получивших теоретическое объяснение, поскольку во времена Бунзена было мало известно о механизмах взаимодействии света и атомов вещества.

В том же 1859 году коллега Бунзена, известный физик Густав Роберт КИРХГОФ использовал совпадение спектров излучения и поглощения для калибровки оптического инструмента. Он пропускал через призму сначала свет от раскаленного натрия, а затем солнечный свет, добиваясь совпадения спектральных линий натрия с темными линиями в спектре Солнца. И тут он провел опыт, в результате которого выяснилось, что, если солнечные лучи пропустить через окрашенное натрием пламя горелки, темные линии натрия в спектре Солнца становятся еще более темными и выраженными. Иными словами, выяснилось, что раскаленный натрий не только испускает свет определенных спектральных частот, но и поглощает свет тех же длин волн, причем более интенсивно, если источник излучения разогрет до более высоких температур, чем натрий.

И тут Кирхгоф совершил интуитивный прорыв, догадавшись, что атом химического элемента способен излучать и поглощать свет лишь одних и тех же частот. Иными словами, если атом излучает свет какой-либо частоты, он обязательно способен и поглощать свет этой частоты. (И такая схема единственная была способна объяснить дальнейшее затемнение линий Фраунгофера в спектре Солнца: продолжая излучать на своих спектральных частотах, атомы раскаленного натрия поглощали еще больше энергии излучения на них же.)

Из открытия Кирхгофа незамедлительно следовало, что темные спектральные линии в солнечном свете убедительно доказывают, что на Солнце реально имеются химические элементы, которым они соответствуют (натрий в том числе). Изучение, исходящее из внутренних слоев Солнца, имеет абсолютно белую спектрально-цветовую гамму, то есть изначально в спектре излучения Солнца присутствуют все без исключения цвета — он непрерывен. А темные линии появляются в нем в результате поглощения части спектра в поверхностных слоях Солнца и, следовательно, присутствуют в составе солнечного вещества.

С точки зрения модели атома Бора открытие Кирхгофа—Бунзена объясняется достаточно легко. Мы теперь знаем, что атом испускает свет квантами при скачке электронов с более высокой орбиты на более низкую. Энергия излучаемых фотонов при этом строго фиксирована и соответствует разнице между энергетическими уровнями орбит — именно она определяет частоту и длину световой волны. При поглощении света атомом он, опять же, поглощается путем «усвоения» электронами фотонов тех же энергий, которые необходимы для перехода на один уровень вверх. Соответственно, любой атом имеет в своем спектре фиксированный набор частот излучения и поглощения, соответствующий энергетическим разностям между электронными орбитами. В этом контексте открытие Кирхгоффа—Бунзена — всего лишь дополнительное подтверждение того, что энергии перехода электрона с верхней орбиты на нижнюю и обратно равны. Это просто еще одно проявление закона сохранения энергии, аналогичное тому, как, спустившись на одну ступеньку лестницы вниз, мы теряем ровно столько потенциальной энергии, проделывая отрицательную работу, сколько мы получаем ее, поднимаясь на ту же ступеньку вверх и проделывая положительную.

Одним из главных и далеко идущих последствий открытия Кирхгоффа—Бунзена стало то, что это открытие положило начало целой области прикладных исследований — спектроскопии, или спектральному анализу. Оно стало настоящей вехой в истории экспериментальной и прикладной науки. Достаточно упомянуть, что сегодня, изучая спектры излучения, астрофизики с большой точностью определяют химический состав не только Солнца, но любого видимого космического объекта во Вселенной, а ведь когда-то о таком никто не смел даже и мечтать. Сегодня десятки тысяч научных лабораторий во всём мире оснащены высокотехнологичными компьютерными спектрометрами и спектрографами, позволяющими изучать состав любых веществ практически без погрешностей, и стоимость такого спектрографического оборудования доходит нередко до миллионов долларов. Интересно, что бы сказали Кирхгоф и Бунзен, сравнив эти приборы со своими спектрометрами, сооруженными из обычных стеклянных призм и пары пустых ящиков из-под сигар.

БиографииРоберт Вильгельм БУНЗЕН

 

См. также:

конец XVIII в. Проба на окрашивание пламени

1868, 1895 Открытие гелия

1896 Эффект Зеемана

1900 Излучение черного тела

1913 Атом Бора